
SCA

OSOA Collaboration | 05/12/2006 |

Assembly of Business Systems using
Service Component Architecture

Anish Karmarkar
Oracle Portland

Mike Edwards
IBM Hursley Park

SCA

OSOA Collaboration
Slide 2

Service Component Architecture (SCA):

A model for the creation of business systems using SOA
by the composition and deployment of new and existing
service components

� SCA:Why?

� SCA: What?

� SCA: How and Where?

� Summary

SCA

OSOA Collaboration
Slide 3

Outline

� SCA: Why?

� Business Drivers

� What We Have Today

� Where We Want To Get To

� SOA Programming Model

� SCA: What?

� SCA: How and Where?

� Summary

SCA

OSOA Collaboration
Slide 4

Traditional Business*

Today’s World-Class Business*

*Sources: CBDi

� Economics: globalization demands greater

flexibility

� Global supply chain integration

� Business processes:

daily changes vs. yearly changes

� Growth through flexibility is at

the top of the CEO agenda

� Reusable assets can cut costs

by up to 20%

� Crucial for flexibility and becoming

an On Demand Business

Flexible business requires flexible IT

Business Drivers

SCA

OSOA Collaboration
Slide 5

What We have Today

� Complexity

� Rigid, brittle architectures

� Inability to evolve

SCA

OSOA Collaboration
Slide 6

What we want to get to

� Well-defined interfaces with business-level semantics

� Standardized communication protocols

� Flexible recombination of services to enhance software flexibility

Service-Oriented Architecture is one of the key technologies to enable
flexibility and reduce complexity

+

SCA

OSOA Collaboration
Slide 7

The SOA Programming Model

� SOA Programming Model derives its technical strategy and vision from the basic
concept of a service:

“A service is an abstraction that encapsulates a software function.”

“Developers build services, use services and develop solutions that aggregate services.”

“Composition of services into integrated solutions is a key activity”

Core Elements

� Service Assembly

• technology- and language- independent representation of the composition of services into

business solutions

� Service Component

• technology- and language-independent representation of a service which can be composed with

other services

SCA

OSOA Collaboration
Slide 8

Outline

� SCA: Why?

� SCA: What?

� SCA: Simplified Programming Model for SOA

� SCA: High Level View

� SCA Elements

� Assembly Model Concepts

• Component, Service, Composite, Interaction Model, System

� SCA Client and Implementations

� SCA Bindings

� SCA Policy

� SCA: How and Where?

� Summary

SCA

OSOA Collaboration
Slide 9

SCA: Simplified Programming Model for SOA

� What is SCA:

� executable model for assembly of service components into business solutions

� simplified component programming model for implementation of services:

• Business services implemented in any of a variety of technologies

e.g. EJBs, Java POJOs, BPEL process, COBOL, C++, PHP …

� Key Benefits of SCA:

� Loose Coupling: Components integrate with other components without needing to
know how other components are implemented

• Loose coupling - KEY requirement for SOA

� Flexibility: Components can easily be replaced by other components

• Flexibility - KEY requirement for SOA

� Services can be easily invoked either synchronously or asynchronously

� Composition of solutions: clearly described

• Composition of services - KEY requirement for SOA

� Productivity: Easier to integrate components to form composite application

� SCA simplifies development experience for all developers, integrators and
application deployers

SCA

OSOA Collaboration
Slide 10

SCA: What is it NOT

� Does not model individual workflows

� use BPEL or other workflow languages

� Is not Web services

� SCA can use / may use Web services, but can also build solutions with

no Web services content

� Is not tied to a specific runtime environment

� distributed, hetergeneous, large, small

� Does not force use of specific programming languages and

technologies

� aims to encompass many languages, technologies

SCA

OSOA Collaboration
Slide 11

SCA – High Level View

� Unified declarative model describing service assemblies

� dependency resolution and configuration

� declarative policies for infrastructure services

• Security, Transactions, Reliable messaging

� Business-level model for implementing services

� service components with service interfaces

� no technical APIs like JDBCTM, JCATM, JMSTM, …

� Binding model for multiple access methods and infrastructure

services

� WSDL, SOAP over HTTP, JMSTM/messaging, JavaTM RMI/IIOP…

SCA

OSOA Collaboration
Slide 12

SCA Elements

� Assembly Model

� how to define structure of composite applications

� Client & Implementation specifications

� how to write business services in particular languages

� Java, C++, BPEL, PHP….

� Binding specifications

� how to use access methods

� Web services, JMS, RMI-IIOP, REST…

� Policy Framework

� how to add infrastructure services to solutions

� Security, Transactions, Reliable messaging…

SCA

OSOA Collaboration
Slide 13

Warehouse

Service

WarehouseComposite

Warehouse

Broker

Component

Warehouse

Component

EventLog

Component

Order

Processing

Service

OrderProcessing

Component

EventLog

Reference

External

Warehouse

Reference

Payments

Component

Payment

Service

AccountsComposite
External

Banking

Reference

Accounts

Ledger

Component

Example SCA assembly

SCA

OSOA Collaboration
Slide 14

Assembly Model Concepts

� Component

� Implementation

� Composite

� Service

� Reference

� Wire

� System

SCA

OSOA Collaboration
Slide 15

Component

� Configured instance of implementation within a Composite

� more than one component can use same implementation

� Provides and consumes services

� Sets implementation properties

� Sets service references by wiring them to services

� wiring to services provided by other components or by references of

the composite

Component… …

services

references

properties

Implementation

- Java

- BPEL

- Composite

…

SCA

OSOA Collaboration
Slide 16

Service Implementations

� Basic elements of business function

� Support for different implementation technologies

� e.g. JavaTM, Spring, BPEL, C++, PHP, XSLT…

• implementation type extensibility

� composite can also be used as an implementation

� Provides business function via one or more services

� Uses other services through service references

� Service and references typed by interfaces

� Scoped

� Runtime managed state and message routing

SCA

OSOA Collaboration
Slide 17

Composite

Composite A

Component

AService

Binding

Web Service

SCA

JCA

JMS

SLSB

…

Binding

Web Service

SCA

JCA

JMS

SLSB

…

Component

B

Service

- Java interface

- WSDL PortType

Reference

- Java interface

- WSDL PortType

Wire WireWire

Reference

Property

setting

Properties

SCA

OSOA Collaboration
Slide 18

Composite

� Assembly of service components developed and deployed
together

� Contains

�public services

�service implementations organized as components

�required services as references

�wires connect components, services, and references

�properties

� May be used as implementation of components at next
higher layer

SCA

OSOA Collaboration
Slide 19

SCA Interaction Model

� Synchronous & Asynchronous service relationships

� Conversational services

�stateful service interactions

� Asynchronous support

�“non-blocking” invocation

�asynchronous client to synchronous service

�callbacks

SCA

OSOA Collaboration
Slide 20

Example

bigbank.accountcomposite

AccountService

Component
Service

AccountService

Reference

StockQuote

Service

AccountData

Service

Component

bigbank.accountcomposite

AccountService

Component
Service

AccountService

Reference

StockQuote

Service

AccountData

Service

Component

SCA

OSOA Collaboration
Slide 21

sca file for bigbank.accountcomposite

<?xml version="1.0" encoding="ASCII"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.accountcomposite" >

<service name="AccountService">
<interface.java interface="services.account.AccountService"/>
<binding.ws port="http://www.bigbank.com/AccountService#

wsdl.endpoint(AccountService/AccountServiceSOAP)"/>
<reference>AccountServiceComponent</reference>

</service>

<component name="AccountServiceComponent">
<implementation.java class="services.account.AccountServiceImpl"/>
<property name=“currency”>EURO</property>
<reference name="accountDataService" target="AccountDataServiceComponent"/>
<reference name="stockQuoteService" target="StockQuoteService"/>

</component>

<component name="AccountDataServiceComponent">
<implementation.java class="services.accountdata.AccountDataServiceImpl"/>

</component>

<reference name="StockQuoteService">
<interface.java interface="services.stockquote.StockQuoteService"/>
<binding.ws port="http://www.quickstockquote.com/StockQuoteService#

wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/>
</reference>

</composite>

SCA

OSOA Collaboration
Slide 22

System

� Composites deployed, configured into SCA system

� SCA runtime – potentially distributed

� System contains components, services, references, wires

� configured using composites

� Composites make deployment simpler

� individual composites created, deployed independently

� may contain only wires, components or externally provided

services or references

SCA

OSOA Collaboration
Slide 23

SCA Client and Implementation Specifications

� Specify how service components and service clients are built

� Specific to a particular language or framework or language- or
framework-specific APIs

� Extensible

� Currently defined C&I specifications:

� BPEL

� Java

� Spring Framework

� EJB

� JAX-WS

� C++

� (PHP)

SCA

OSOA Collaboration
Slide 24

SCA Bindings

� Specific to particular:

� Access Method / Protocol / Transport

� Serialization

� Framework

� Apply to services and references

� Typically added during deployment

� Currently defined bindings:

� Web services binding

� JMS binding

� JCA binding

� EJB (RMI-IIOP) binding

SCA

OSOA Collaboration
Slide 25

Policies and Infrastructure Capabilities

� Infrastructure has many configurable capabilities

� Security: Authentication and Authorization

� Security: Privacy, Encryption, Non-Repudiation

� Transactions, Reliable messaging, etc.

� Complex sets of configurations across multiple domains of concern

� SCA abstracts out complexity with a declarative model

� no implementation code impact

� simplify usage via declarative policy intents

� simple to apply, modify

� complex details held in PolicySets

SCA

OSOA Collaboration
Slide 26

Policies, Profiles and Quality of Service

� Framework consists of:

� SCA policy intent

• Each represent a single abstract QoS intent

• may be qualified

� SCA policy sets

• Represent a collection of concrete policies to realize an abstract

QoS intent

� WS-Policy

• A syntax for concrete policies in policy sets

• others possible…

SCA

OSOA Collaboration
Slide 27

Attaching Profiles and mapping to PolicySets

Intents

Interaction

Policy

Interaction

Policy
Implementation

Policy

Composite

Component

service

Intents

Intents

reference

confidentiality

integrity”

rm.exactlyOnce

<PolicySet>
@provides=“confidentiality,

integrity,
rm.exactlyOnce”

Policies

locate

WS-Policy

Binding Web Services

JCA

JMS

…

@Bindings=“WebServices”

● Intents attached to SCA elements

● PolicySets declare what QoS intents they provide

● and which Bindings they are for

● Intents index into a PolicySet for each Binding

SCA

OSOA Collaboration
Slide 28

� Interaction policies affect the contract between a service
requestor and a service provider

� Things that affect the interaction between them,
such as message contexts, wire formats, etc.

� eg. authentication, confidentiality, integrity

� eg rm.atLeastOnce, rm.ordered

� Implementation policies affect the contract between a component
and its container

� Things that affect how the container should manage the component
environment,
such as transaction monitoring, access control, etc.

� eg tx.transaction

Interaction and Implementation Policies

SCA

OSOA Collaboration
Slide 29

Outline

� SCA:Why?

� SCA: What?

� SCA: How and Where?

� Open SOA (OSOA) Collaboration

� OSOA & Evolution of Specifications

� Future Work

� Open Source Projects and Other Implementations

� Useful Information and Pointers

� Summary

SCA

OSOA Collaboration
Slide 30

The Open SOA (OSOA) Collaboration

� SCA specs being evolved by group of collaborators
� BEA, CapeClear, IBM, Interface21, IONA, Oracle, Primeton Technologies, Progress

Software, Red Hat, SAP, Rogue Wave, Software AG, Sun Microsystems, Sybase, TIBCO,

XCalia, Zend Technologies

� OSOA is not a standards body

� Innovate rapidly and deliver the specification set to the community

� Eventual submission to standards body

� Royalty Free

� Public website for specifications, white papers, news, etc

� http://www.osoa.org

� comment and feedback welcome

� OSOA Supporters group

SCA

OSOA Collaboration
Slide 31

OSOA & Evolution of SCA Specifications

� Working towards SCA 1.0

� Target delivery date of February 2007

� Will contain:

� SCA Assembly Specification

� SCA Policy Framework

� SCA Client and Implementation for BPEL

� SCA C&I for C++

� SCA C&I for Java

� SCA C&I for Spring Framework

� SCA C&I for EJB*

� SCA C&I for JAX-WS*

� SCA Web Service Binding

� SCA EJB Binding

� SCA JMS Binding

� SCA JCA Binding*

* = later publication date

SCA

OSOA Collaboration
Slide 32

Future Work

� Work will continue in the OSOA collaboration

� SCA Eventing Model

� SCA Client and Implementation Model for PHP

• other scripting languages being investigated

� SCA Client and Implementation Model for COBOL

� other implementation languages & frameworks may follow

SCA

OSOA Collaboration
Slide 33

Open Source Projects and Other Implementaions

� Apache Tuscany Incubator Project
�Aims to provide SOA programming runtime based on SCA and SDO

�currently has “incubator” status within Apache

�JavaTM & C++ implementations today

�Aim to support several runtimes and protocols in future

�Associated PHP implementation on PECL site

� Eclipse SOA Tools Project
�Eclipse-based tooling for SOA applications and systems

�Based on SCA as model for solutions built using SOA

�Target range of systems including SCA runtimes such as Tuscany

� Several other OSOA collaboration vendor
implementations

�Oracle Fabric, IBM WebSphere, RogueWave, TIBCO….

SCA

OSOA Collaboration
Slide 34

Useful Information And Pointers

� contact:

�anish.karmarkar@oracle.com

�mike_edwards@uk.ibm.com

� SCA, SDO specifications and related material

� http://www.osoa.org

� Apache Tuscany Incubator project

�http://incubator.apache.org/tuscany

� Eclipse SOA Tools Project

�http://www.eclipse.org/stp/

SCA

OSOA Collaboration
Slide 35

Summary

� SCA models systems built using a Service Oriented

Architecture

� supports Service Implementation, Service Assembly

� open to many kinds of service implementation

� open to many types of service access

� declarative intent & policy approach to application of Security &

Transaction

